Virtual environments of JupyterLab, kernels, and dependencies
Make an isolated ML development environments in JupyterLab with ipykernel. Here’s how.
Create a virtual environment. Install the python libraries that you want for your ML research in that venv. Installl ipykernel in that venv as well
### Create a venv for the libraries you need
$ /Users/myname/.local/venvs/default-3.10.2/bin/python -m venv kernel-venv-3.10
$ kernel-venv-3.10/bin/python -m pip install numpy
$ kernel-venv-3.10/bin/python -m pip install ipykernel
### Then, register that venv as a IPython Kernel
$ kernel-venv-3.10/bin/python -m ipykernel install --user --name=kernel-3.10 --display-name "Python (kernel-venv-3.10)"
Installed kernelspec kernel-3.10 in /Users/myname/Library/Jupyter/kernels/kernel-3.10
$ cat /Users/myname/Library/Jupyter/kernels/kernel-3.10/kernel.json
{
"argv": [
"/Users/myname/ml/kernel-venv-3.10/bin/python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"
],
"display_name": "Python (kernel-venv-3.10)",
"language": "python",
"metadata": {
"debugger": true
}
}
Now your jupyterlab, which can be installed in another venv, can capture this kernel and show that as an option to create a notebook. Your notebook can run in an isolated, controlled enviroment!
$ jupyterlab-venv/bin/jupyter lab --notebook-dir=/Users/myname/ml/notebooks
若您覺得有趣, 請
追蹤我的Facebook 或
Linkedin,
讓你獲得更多資訊!